DEPARTMENT OF INDUSTRIAL ENGINEERING COURSE SYLLABUS

	ENCLISH	ENGLISH ARABIC		CREDITS			
COURSE TITLE	CODE/NO	CODE/N O.	Th.	Pr.	Tr.	Tota l	
Industrial Safety Engineering	IE 442	هـ ص ٤٤٢	3	1	3	3	
Pre-requisites:	IE342						
Course Role in Curriculum	Required or Electiv	e:	Elective	e			

Catalogue Description:

Occupational exposure: permissible levels and legal aspects. Hazards' anticipation and recognition. Physical hazards particularly heat, noise and vibration, light, non-ionizing and ionizing radiations: assessment and control. Chemical agents: assessment and control. Industrial ventilation. Design of local exhaust systems.

Textbooks:

Kerry Gardiner and J. Malcolm Harrington (Editors), Occupational Hygiene, 3/e, Blackwell, Massachusetts, 2005

<u>Supplemental Materials:</u>

Instructor notes

Course Learning Outcomes:

By the completion of the course the student should be able to:

- 1. Anticipate and recognize occupational health hazards.
- 2. Evaluate occupational health hazards and conduct risk assessments.
- 3. Identify the optimum control methods of occupational health hazards.
- 4. Design a ventilation system to control workplace air qualitys.

<u>Top</u>	ics to be Covered:	<u>Duration</u> in Weeks
1	Introduction to industrial hygiene and workplace hazards (1 class)	0.5
2	Toxicology (2 classes)	1.0
3	The effects of inhaled materials on the lung and other target organs (1 class)	0.5
4	The effects of some physical agents (2 classes)	1.0
5	The nature and properties of workplace airborne contaminants (1 class)	0.5
6	Principles of Risk Assessment (2 classes)	1.0
7	Hazard Communication and Occupational Exposure Limits (2 classes)	1.0
8	The sampling of aerosols (2 classes)	1.0
9	The sampling of gases and vapors (2 classes)	1.0

10	Noise (4 classes)	2.0
11	The thermal environment (4 classes)	2.0
12	Ionizing and non-ionizing radiation (2 classes)	1.0
13	Industrial ventilation (4 classes)	
<u>Stud</u>	ent Outcomes addressed by the course: (Put a $\sqrt{\text{sign}}$)	
(a)	an ability to apply knowledge of mathematics, science, and engineering	
(b)) an ability to design and conduct experiments, as well as to analyze and interpret data	
(c)		
	realistic constraints such as economic, environmental, social, political, ethical, health	
	and safety, manufacturability, and sustainability	
(d)	an ability to function on multidisciplinary teams	
(e)	an ability to identify, formulate, and solve engineering problems	\checkmark
(f)	an understanding of professional and ethical responsibility	
(g)	an ability to communicate effectively	
(h)	the broad education necessary to understand the impact of engineering solutions in a	√
	global, economic, environmental, and societal context	
(i)	a recognition of the need for, and an ability to engage in life-long learning	
(j)	a knowledge of contemporary issues	
(k)	an ability to use the techniques, skills, and modern engineering tools necessary for	√
	engineering practice.	

Key Student Outcomes assessed in the course: (b) and (c)

Instructor or course coordinator: Dr. Mohamed Abdel-Monaem Zytoon *Last updated:* September 2014